

NASA Electronic Parts and Packaging (NEPP) Program

Anomalous Transients in Chip Polymer Tantalum Capacitors

Alexander Teverovsky

AS&D, Inc. Work performed for Parts, Packaging, and Assembly Technologies Office, NASA GSFC, Code 562 Alexander.A.Teverovsky@nasa.gov

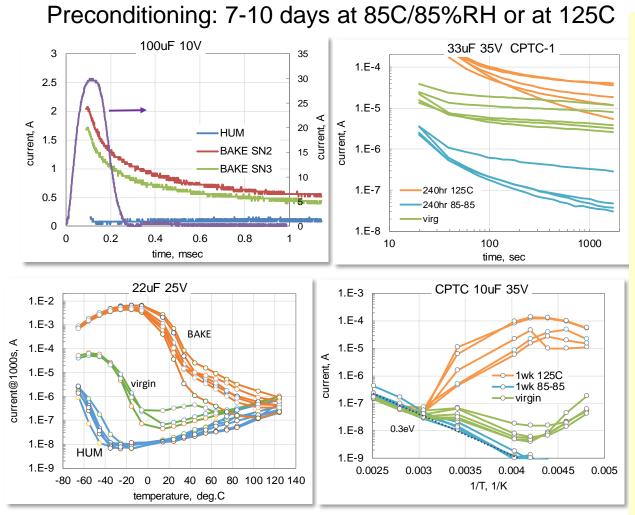
Outline

- Issues with chip polymer tantalum capacitors (CPTC)
- Experiment
- Factors affecting transient currents
 - Preconditioning
 - Temperature
 - Voltage
 - Vacuum
 - Operation at high temperature under bias
 - Part type
- Anomalies in AC characteristics
- Mechanisms of anomalous transients
- Summary

Issues with CPTCs

- Major benefits compared to MnO2 capacitors:
 - Better volumetric efficiency (smaller case sizes for the same CV);
 - Higher operating voltages (up to 125V);
 - Lower ESR (milliohm range);
 - A relatively safe failure mode (no ignition).
- Major drawbacks:

- Insufficient or excessive amount of moisture might be detrimental;
- Vacuum can be a benefit or a hazard;
- Weibull grading test is not applicable;
- ESR might degrade with time at high temperatures;
- A new phenomena: **anomalous transients**.

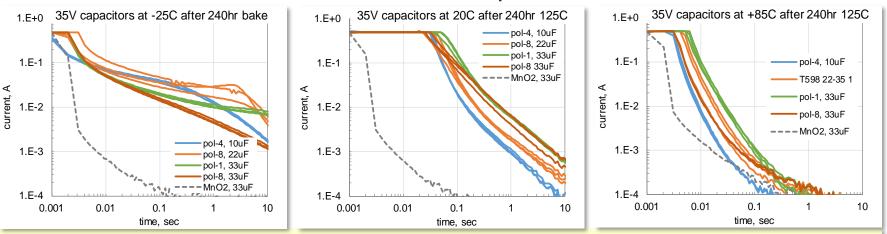

Anomalous transients include a group of phenomena:

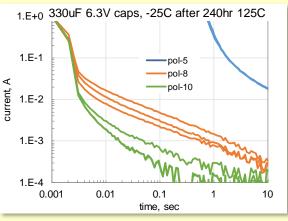
- A temporary short circuit without damaging the part;
- Increasing of C and DF with voltage;
- Substantial increasing of DCL at low temperatures.

Experiment

- Transient currents were monitored using three techniques:
 - From 1 µsec to 1 msec using a current probe and an oscilloscope using a set-up for surge current testing.
 - From 1 msec to 10 sec using a power SMU in Agilent Analyzer 4156A. The currents were clamped at 1 A at ≤ 20V and 0.5 A at ≤ 40V.
 - From 10 sec to hours using a PC-based system by scanning voltages across 1k to 10k limiting resistors.
- More than 20 types of CPTCs from three manufacturers rated from 6.3V to 35V were used. Most capacitors had case size D.
- The parts were used in "as is" (virgin) condition within a few days of removal from dry bags, and after soaking in humidity chamber at 85 °C, 85% RH (hum), or after storing at 125 °C (bake). Duration of soaking or storing was typically 10 days.
- Thirteen part types were tested after 2000 hr storage in vacuum at 3×10⁻⁶ torr.

Effect of Preconditioning

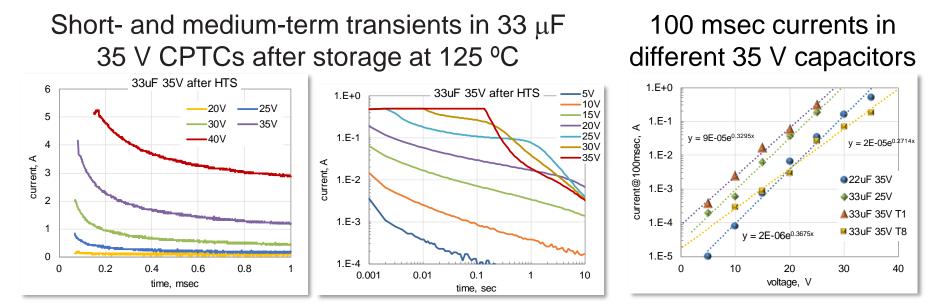


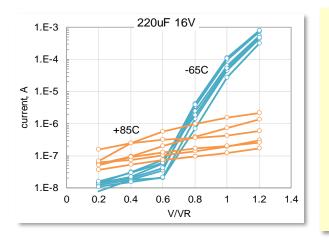

 Preconditioning affects transient currents from 0.1 millisec to hours. Behavior of CPTCs with moisture is similar to MnO2 caps. ✓ At RT dry CPTCs might have currents >10³ times greater than humidified caps. Contrary to MnO2 capacitors, leakage currents at low

temperatures in dry CPTCs might increase up to 10⁶ times.

Effect of Temperature

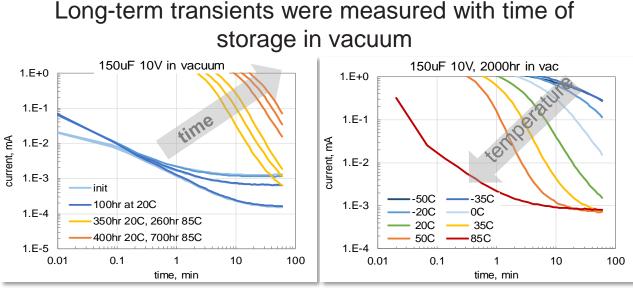
Medium-term transients at -25, +20, and +85 °C for different types of dry 35V and 6.3V capacitors

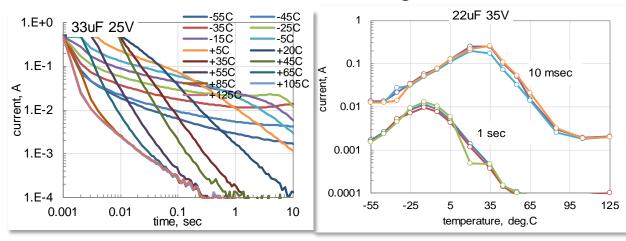




 Transient currents are increasing at low temperatures and might exceed 1A for up to 1 sec that might be interpreted as a short circuit failure during cold start-up of the system.
Currents exceeding 1 A after 1 msec are currently considered a failure during surge current testing per MIL-PRF-55365.

✓ CPTCs with high-current transients can endure multiple surge cycling.

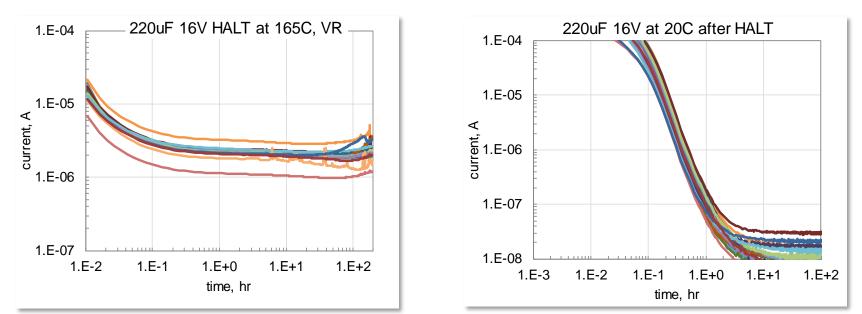

Effect of Voltage



✓ Near exponential *I(V)* dependence.
✓ The rate of voltage variations at low temperatures is changing at ~0.5VR
✓ At RT *I(0.5VR)* ≈ 0.01×*I(VR)* ✓ Voltage derating is an effective means to constrain anomalous transients.

Effect of Vacuum

Mid-term transients after storage in vacuum



Anomalous transients appear in vacuum after ~100hr. Currents might exceed 1 mA for more than 5 min. Inverse temp. dependence of leakage currents. Short- and longterm transients have different extremal dependencies on temperature and might be due to different mechanisms.

Operation at HT under Bias

Currents in 220 µF 16 V CPTCs during HALT at 165 °C, 16 V for 200 hr

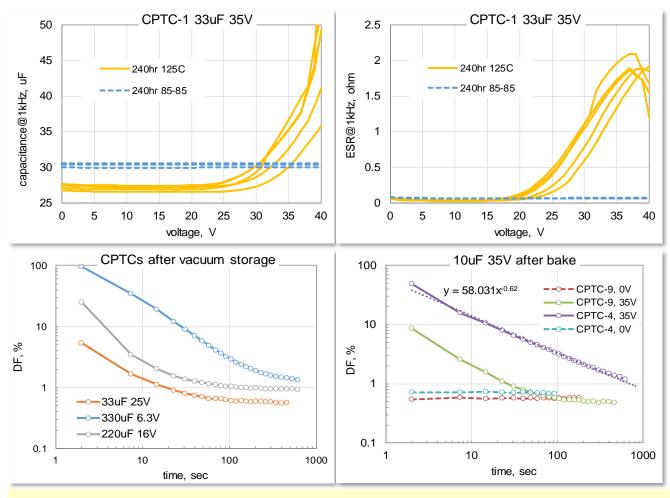
Currents at 22 °C, 16 V after HALT and 1 hour depolarization

✓ Currents at RT after HALT during first few minutes exceeded currents at 165 °C by orders of magnitude and then decreased more than 10⁴ times after 10 hours.

✓ HT biased operation results in anomalies similar to HT storage.

Effect of Part Type

Transient currents in different types of


capacitors after 2000 hr in vacuum CPTC after 2000hr in vacuum 10uF 35V after 150hr at 125C 1.E-4 5 4.5 1.E-5 4 standard 3.5 ✓ 1.E-6T.E-7 3 220uF 16V 33uF 25V 330uF 6.3V 10uF 35V 22uF 35V modified 1.5 1.E-8 1 0.2eV 0.5 1.E-9 0 0.003 0.0035 0.0025 0.004 0.0045 0.2 0.8 0 0.4 0.6 1 1/T, 1/K time, msec

✓ After vacuum storage currents might exceed 3 A after 1 msec.

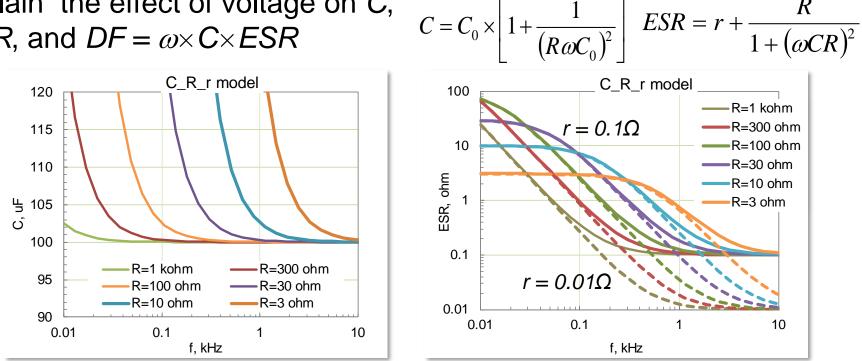
- Different part types have substantially different levels of transient currents.
- Modification of polymers can practically eliminate anomalies in behavior of CPTCs.

I(T) measured at 1000 sec for CPTCs having different conductive polymers

Anomalies in AC Characteristics

 ✓ In the presence of moisture AC characteristics are stable.

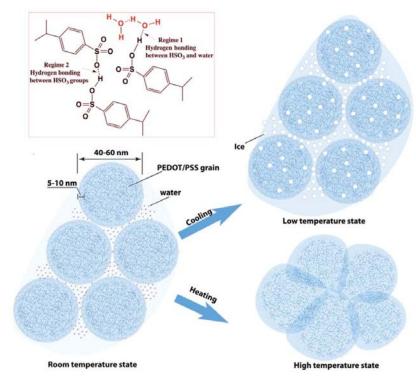
 C, ESR, and DF are increasing substantially with voltage.


 ✓ DF in dry CPTCs can increase well above 10% and then decrease gradually with time.

 Anomalous behavior is most evident at low frequencies and become negligible at f > 10 kHz.

Mechanism of Anomalies in C and DF

R


A simple C-R-r model of a capacitor with leakage can be used to explain the effect of voltage on *C*, *ESR*, and $DF = \omega \times C \times ESR$

 The effect is due to increased conductivity of Ta2O5 that increases sharply with voltage.

Mechanism of Anomalous Transients

- The existing model for anomalous charging currents does not explain long-term transient effects.
- Variations in the moisture content and temperature affect the coreshell morphology of the polymer and might change its electronic band structure.
- Shifting positions of the molecular orbitals might change currents in CPTCs by changing the barrier height at the interface polymer/Ta2O5.

Changes in morphology of PEDOT/PSS with moisture content and temperature, Zhou et al. 2014

Summary

Anomalous transients include a group of phenomena:

- temporary shorting of the part;
- increasing currents at low temperatures;
- increasing C and DF with voltage at low frequencies.
- Anomalous transients can be observed in all types of CPTCs in dry conditions. In the presence of moisture the parts behave similar to MnO2 capacitors.
- The level of transients depends on the type of capacitors. A proper selection of polymers might reduce anomalies substantially.
- Mechanism: changes in the core-shell structure of dry PEDOT:PSS that affect the barrier height at the polymer/Ta2O5 interface. Oxidation/reduction reactions with time under bias result in decreasing of leakage.

Summary, Cont'd

- CPTCs can be used in space applications at the following conditions:
 - The sensitivity of the systems and circuits to the effect of possible anomalies is evaluated by circuit designers.
 - A 50% voltage derating is applied.
 - The level of anomalous transients is limited by special screening and qualification procedures.